If ${\Delta _1} = \left| {\begin{array}{*{20}{c}}
x&{\sin \,\theta }&{\cos \,\theta } \\
{\sin \,\theta }&{ - x}&1 \\
{\cos \,\theta }&1&x
\end{array}} \right|$ and ${\Delta _1} = \left| {\begin{array}{*{20}{c}}
x&{\sin \,2\theta }&{\cos \,\,2\theta } \\
{\sin \,2\theta }&{ - x}&1 \\
{\cos \,\,2\theta }&1&x
\end{array}} \right|$, $x \ne 0$ ; then for all $\theta \in \left( {0,\frac{\pi }{2}} \right)$
${\Delta _1} - {\Delta _2} = - 2{x^3}$
${\Delta _1} + {\Delta _2} = - 2({x^3} + x - 1)$
${\Delta _1} - {\Delta _2} = x\left( {\cos \,2\theta - \cos \,4\theta } \right)$
${\Delta _1} + {\Delta _2} = - 2{x^3}$
Let $A = \left[ {\begin{array}{*{20}{c}}
2&b&1 \\
b&{{b^2} + 1}&b \\
1&b&2
\end{array}} \right]$ where $b > 0$. Then the minimum value of $\frac{{\det \left( A \right)}}{b}$ is
If $A, B, C$ be the angles of a triangle, then $\left| {\,\begin{array}{*{20}{c}}{ - 1}&{\cos C}&{\cos B}\\{\cos C}&{ - 1}&{\cos A}\\{\cos B}&{\cos A}&{ - 1}\end{array}\,} \right| = $
If for some $\alpha$ and $\beta$ in $R,$ the intersection of the following three planes $x+4 y-2 z=1$ ; $x+7 y-5 z=\beta$ ; $x+5 y+\alpha z=5$ is a line in $\mathrm{R}^{3},$ then $\alpha+\beta$ is equal to
For the system of linear equations $a x+y+z=1$, $x+a y+z=1, x+y+a z=\beta$, which one of the following statements is NOT correct ?
$\left| {\,\begin{array}{*{20}{c}}{19}&{17}&{15}\\9&8&7\\1&1&1\end{array}\,} \right| = $