3 and 4 .Determinants and Matrices
hard

If ${\Delta _1} = \left| {\begin{array}{*{20}{c}}
  x&{\sin \,\theta }&{\cos \,\theta } \\ 
  {\sin \,\theta }&{ - x}&1 \\ 
  {\cos \,\theta }&1&x 
\end{array}} \right|$ and ${\Delta _2} = \left| {\begin{array}{*{20}{c}}
  x&{\sin \,2\theta }&{\cos \,\,2\theta } \\ 
  {\sin \,2\theta }&{ - x}&1 \\ 
  {\cos \,\,2\theta }&1&x 
\end{array}} \right|$, $x \ne 0$ ; then for all $\theta  \in \left( {0,\frac{\pi }{2}} \right)$

A

${\Delta _1} - {\Delta _2} =  - 2{x^3}$

B

${\Delta _1} + {\Delta _2} =  - 2({x^3} + x - 1)$

C

${\Delta _1} - {\Delta _2} = x\left( {\cos \,2\theta  - \cos \,4\theta } \right)$

D

${\Delta _1} + {\Delta _2} =  - 2{x^3}$

(JEE MAIN-2019)

Solution

${\Delta _1} = \left| {\begin{array}{*{20}{c}}
x&{\sin \theta }&{\cos \theta }\\
{ – \sin \theta }&{ – x}&1\\
{\cos \theta }&1&x
\end{array}} \right|$

$ = x\left( { – {x^2} – 1} \right) – \sin \theta \left( { – x\sin \theta  – \cos \theta } \right) + \cos \theta \left( { – \sin \theta  + x\cos \theta } \right)$

$ \Rightarrow  – {x^3}$

${\Delta _2} = \left| {\begin{array}{*{20}{c}}
x&{\sin 2\theta }&{\cos 2\theta }\\
{ – \sin 2\theta }&{ – x}&1\\
{\cos 2\theta }&1&x
\end{array}} \right|$

$ \Rightarrow  – {x^3}$

${\Delta _1} + {\Delta _2} =  – 2{x^3}$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.